
on a particle; g, acceleration due to gravity; k , wave vector; k 0, maximum value of k deter- 
mined in (5); K, function describing the effect of physical constraint on the viscous force 
of the phase interaction; m, mass of particle; n, numerical concentration of particles; p, 
pressure; u , mean relative velocity of the phases; v , w, velocities of the fluid and parti- 
cles; V i, W i, dimensionless fluctuation velocities; 6 o = E2/Ez; K = dz/d0; ~, ~, absolute 
and kinematic viscosities; Q, p,, volumetric concentration of particles and the concentra- 
tion corresponding to the packing density; m, frequency; #, ~, spectral densities. The 
subscripts 0 and i respectively denote the fluid and particles; the primes denote fluctua- 
tion quantities; the brackets denote averaging. 

. 

2. 
3. 
4. 

5, 
6. 
7. 
8. 
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NUMERICAL MODELING OF TURBULENT FIELDS OF VELOCITY, TEMPERATURE, 

AND CONCENTRATION IN A RECTANGULAR CHANNEL 

A. A. Mikhalevich, V. I. Nikolaev, and V. K. Fedosova UDC 536.24:532.54 

The finite elements method is used to solve a system of three-dimensional 
transport equations in a rectangular channel. 

Introduction. The numerical modeling of flow and heat and mass transfer in complicated 
channels is a new and important means of investigation. The popularity of numerical experi- 
ments employing computers stems from many factors, the most important being the completeness 
of the information, the speed with which it is obtained, and the possibility of modeling a 
wide range of situations - including some that cannot be realized in a physical experiment. 

The mathematical model and application package employed in the present article can be 
used with success to describe and model a wide range of so-called parabolic flows in closed 
channels of complex form. At the current stage of investigation, we will restrict ourselves 
to flows without buoyancy and we will consider only the longitudinal component of the veloc- 
ity vector. The model contains two assumptions connected with Newtonian fluids. The system 
of transport equations is based on the equations of continuity, motion, energy, diffusion, 
and heat conduction. The numerical realization was accomplished on the basis of the finite 
elements method in the Galerkin modification. Below, we report the details of the formula- 
tion and method of solution of the problem. We also generalize the results and present cer- 
tain other results of numerical experiments. 

Mathematical Model. Initial Equations. To describe the hydrodynamic part of the prob- 
lem, we will use the model of parabolic flow in a closed rectangular channel (Fig. i). 
the Navier-Stokes equations for the longitudinal component of the velocity vector have the 
form: 
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Fig. i. Diagram of the flow, the region of integration, and 
isolines of velocity, temperature, and concentration. A) 
Isolines of T: i) 350, 2) 380, 3) 430, 4) 450, 5) 480, 6) 
490, 7) 500, 8) 520, 9) 610. B) Isolines of U: i) 1.0, 2) 
0.85, 3) 0.60, 4) 0.30, 5) 0.20. C) Isolines of C: i) 
0.002, 2) 0.0021, 3) 0.0025, 4) 0.003, 5) 0.008, 6) 0.01; 7) 
0.015). !) Isoperimetric square; form of the equation being 
solved: II) A(8~/~z) = 7(FV~) + Q; III) 7(~VT) = 0; To, U0, 
C o ) input values. 

pU OU OP O i(~+~t)OU 1 0 I OU ] (1) 

The continuity equation is more convenient to use in integral form 

Spuds  : const. (2) 
s 

We determined eddy viscosity by using the Buleev model [i], which is a variant of the Prandtl 
mixing-length model. This hypothesis allows us to write the equation for the transfer of 
thermal energy and mass in the form 

pUcp OT 0 [ ?~t) OT lq: O - I ( ) v ,  ^ OT ] ox (>':+ ox j +'  ')TF ] +sT, (3) 

pU OCt, 0 [ (Dh + Dt) OCk l + _ ~ 0  [(D~_kDt)OCt, - t 
Oz -- 0~/-. Ox j Oy Oy J -~ R'~" (4) 

In the general case, the theoretical region includes the heat-conducting wall, while 
the system of transport equations is augmented by the heat conduction equation 

O~T -k 02T --0. (5) 
Ox z Of 

Equations (1)-(5) can be represented in the form of the generalized diffusion equation 
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The coefficients A, rx, and Fy in Eq. (6) and the source term Q are determined on the basis 
of the physical meaning of Eq. (6). The calculation of these coefficients is a fairly diffi- 
cult procedure for the chemically reactive heat carrier NiOi-NO, in which the following reac- 
tions occur: i) NiO 4 = NO2; 2) 2NO 2 = 2NO + 02; 3) NiO 3 = NO 2 + NO. Since this issue is 
not central to the present problem, we will omit these calculations here. Calculations of 
the coefficients A, Fx, and Fy and the source terms S T and R k in Eqs. (1)-(4) are presented 
in [2]. We used methods such as those described in [3] to calculate the thermophysical and 
transport properties of the system NzO4-NO. We add only that the diffusion equation was 
solved for oxygen as a component in all of the chemical reactions that take place in the 
heat carrier. The distribution of the concentrations of the remaining components was deter- 
mined with the assumption that the composition of the chemically reacting gas was stoichio- 
metric at each moment of time. This assumption is quite valid for the given conditions. In 
the case of a gas flow of nonstoichiometric composition, it would be necessary to solve the 
diffusion equations for each component in the chemical reaction. 

Boundary Conditions. The thermal boundary conditions are assigned on the outside sur- 
face of a rectangular tube (Fig. i). Here, we assume the use of conditions of the first, 
second, and third types, as well as any combination of them. 

On the inside surface of the channel walls, the conditions relating the temperatures 
to the heat fluxes are assigned 

OT e~-o OT I Te:-o = Te.+o; ~wa Oa = ~b-~n z:+o" 

For the equation of motion, the condition of adhesion to the washed part of the channel 
perimeter E I is imposed: 

U m = O. 

For all functions being studied, the condition of symmetry on the symmetry lines E 2 is satis- 
fied (if such lines exist) 

OU ~= OT .! OCh l 
On On ~-- = O, On E2 

while for the diffusion equation we require satisfaction of the condition of impermeability 
on the inside wall 

OC~on e,= O. 

At the inlet of the channel (at z = 0), we prescribed uniform (plane) profiles of the 
functions V, T, and C k. 

By making appropriate use of the boundary conditions (fourth type), we can model not 
only convective but also radiative heat exchange between the tube and the environment. 
It should be noted that one of the advantages of the finite elements method is the possibil- 
ity of creating a block program that permits rapid modification of the basic modules to 
solve the widest possible ranges of physical problems. 

Turbulence Model. Eddy viscosity Pt in Eqs. (2)-(4) is determined on the basis of the 
Buleev model. In accordance with the latter, the eddy viscosity coefficients have the fol- 
lowing form: 

Oz -- 0~-< ~ -k-~t )  F.--~y ,-kQ. (6) 

- o,2fo (~) f ,  0D ~*;  (7) 

T 

~' - 0,2fo (~1)  f~ (~,~) ~'*; ( 8 )  
8 

fo 01) = exp ( - -  1/); ( 9 ) 

f ,  (h) = [1 - -  exp ( - -  ~])]/'q; ( 1 0 )  

~ : 6517"; (ii) 
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[0,8@0,2/Pr ~ P r ~  I, (12)  

% = / 1 ,  P r >  l, 

, -77,  = L I - g - ,  ) oy j (13) 

In the general case, the turbulence scale for channels with a constant cross section 
is determined thusly: 

1 _ 1 i a 1 d% (14) 
- U  2~ v z(~) 

0 

where s is the distance from the point being examined to the channel walls in the direc- 
tion determined by the angle ~. To calculate L, it is necessary to integrate the reverse 
distances from the point to the perimeter of the channel cross section. For a channel of 
rectangular cross section, the expression for the turbulence scale has the following form: 

L = 2XlYlX~Y2 . _ _  , ( 1 5  ) 

where  x~ and x2 a r e  t h e  d i s t a n c e s  o f  t h e  p o i n t  f rom one p a i r  o f  oppos i te  s ides  of t h e  r e c -  
t a n g l e  in  t h e  c h a n n e l  c r o s s  s e c t i o n ;  y~ and Y2 a r e  t h e  d i s t a n c e s  o f  t h e  p o i n t  f rom t h e  o t h e r  
p a i r  o f  s i d e s .  The maximum v a l u e  o f  L c a t  t h e  c e n t e r  o f  a c h a n n e l  w i t h  t h e  s i d e s  2a and 2b 
is accordingly 

ab 
L~ = _ _  -. (16)  

This value is convenient to use when comparing the dimensionless hydrodynamic and thermophy- 
sical characteristics of a flow. 

Numerical Method of Solution. The use of the method of finite elements in conjunction 
with the Galerkin method leads to a system of nodal equations that can be written as follows 
in matrix form: 

[Cl d{~___)_} + [K] {~v} + {F} = 0. (17)  
dz 

The c o n t r i b u t i o n  o f  e ach  e l e m e n t  t o  t h e  m a t r i c e s  [K],  [C] ,  and {F} i s  e x p r e s s e d  by t h e  f o r -  
mulas : 

[Cl(~) = .I A [NIr[N] df~; (18)  
fa 

[K] (~) = .f [B] r[D] [BI dQ + S • [NIT [N] dS; (19) 
g $2 

{F}'e' : --.[ Q rNj T a + S q INiTes - -  f [ v?ds 

[S I is the surface where we have assigned boundary conditions of the second type, i.e., 

(20)  

q = -k(8~/3n), while S 2 is the surface on which we have assigned boundary conditions of the 
third type (the heat-transfer coefficient K for the energy equation)]. Boundary conditions 
with a zero heat flux (adiabatic wall) are automatically considered in the finite elements 
methods. The global stiffness matrix [K] is obtained by summation over all of the elements 
in the usual manner. We similarly obtain the damping matrix [C] and the global load vector 
{F}. The matrix [N] T is the transpose of the matrix [N], while [B] and [B] T are the normal 
and transposed gradient matrices and [D] is the conductivity matrix. 

The equations were integrated downflow (along the z axis) in accordance with an im- 
plicit two-layer scheme 

KI+lO~+~-l-C~+l(~i+l--~)/AZ--F~+ 1 = 0. (21)  

As the calculations showed, combining the finite elements method with the finite dif- 
ferences method makes it possible to use two-dimensional elements and employ a scheduling 
procedure in integrating over z. Compared to the use of three-dimensional elements, this 
significantly reduces processor operating time and the amount of internal storage required. 
We use the direct Gauss method to solve the system of algebraic equations. The matrices 
were transformed to the band type. 
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TABLE i. Values of Heat Flux qwa(X) and Shear Stress ~wa(X) 
on the Walls of the Channel TI and T 2 with Different Values 

z/d e 

Value of the 
coordinate 
x~lO 2 , m : 

0,0 
0,1 
0,2 
1,0 
2,0 
3,0 
4,0 
5,0 
5,8 
5,9 
5,0 

0,0 
0,1 
0,2 
1,0 
2,0 
3,0 
4,0 
5,0 
5,8 
5,9 
6,0 

q (x)=--L 0T , W/m 2 
wa ov 

~n the  wall  1 
with  Tl= ~i thT~=40o 
500 K 

724 
729 
727 
693 
689 
688 
689 
693 
727 
729 
724 

487 
497 
485 
519 
533 
537 
533 
519 
485 
497 
487 

12074 

wa (x) = -- 

K r K 

0,0 

OUoy �9 10"-', N/m 2 ! 

withT2=4 0 0 K ] 

0,0 
12356 2,24 
12316 2,39 
11776 2,28 
11712 2,26 
11698 2,26 
11712 2,26 
11776 2,28 
12316 2,39 
12356 2,24 
12074 0,0 

1237 0,0 
1262 0,7 
1235 0,87 
1337 1,20 
1392 1,3t 
1410 1,34 
1392 1,31 
1337 1,20 
1235 0,87 
1262 0,7 
1237 0,0 

0,0190 
0,0203 
0,0194 
0,0193 
0,0193 
0,0193 
0,0194 
0,0203 
0,0190 
0,0 

0,0 
0,52 
0,64 
0,91 
1,0 
1,0, 
1,0 
0,91 
0,64 
0,52 
0,0 

Z/de 

0,04 

70,0 

The program has been widely used and no problems connected with convergence or the sta- 
bility of the solution have arisen. The program was tested and carefully checked by compari- 
son with experimental results, by electrical modeling, and by comparison of numerical results 
with analytical calculations. For example, in calculating heat transfer on the initial sec- 
tion of a circular pipe, the difference between the theoretical and experimental values of 
temperature did not exceed 2%. 

Results and Discussion. Calculations were performed for a turbulent gas flow in a chan- 
nel with 0.06 • 0.06 m sides. The velocity, temperature, and relative concentration of oxy- 
gen at the channel inlet were as follows: U = i m/sec; T o = 485 K; Ck0 = I0 -~. The thermal 
boundary conditions (on the outside surface of the tube) were either fixed temperatures Tl 
and T 2 equal to 400 and 500 K for the top and bottom walls, respectively, and adiabatic con- 
ditions on the lateral surfaces or fixed temperatures T l and T 2 for the bottom and top walls, 
respectively, and a linear change in the temperatures of the side walls. Conditions of im- 
permeability on the inside walls of the channel were assigned for the diffusion equation. 

Table i shows calculated local values of heat flux qwa(X) and shear stress ~wa(X). 

It was once thought [4] that heat transfer in complex channels for heat carriers with 
Prandtl numbers greater than unity could be described by the formulas for circular tubes 
with the use of the equivalent hydraulic diameter in the similarity criteria. The experi- 
ments in [4] showed this notion to be false. For example, in an examination of heat trans- 
fer in tube bundles, it turned out that the perimeter-averaged values of Nu with dense pack- 
ing were roughly half the values calculated from the Ditus-Bolter and Mikheev formulas for 
circular tubes. With an increase in the mesh of the subdivision, the relative numbers Nu 
exceeded the results for circular tubes by 30-35% [5]. 

The feasibility of using Mikheev's criterional formula to calculate heat transfer in 
a rectangular channel was checked by comparing the results of two series of calculations. 
The first was obtained using the criterional formula, while the second was obtained from 
the differential model. ~ Here, the mean value of the number Nu was determined from the rela- 
tion: 

N---~ qwa(X) de ( 2 2 ) 

It turned out that the criterional method yielded higher (by 20-30%) values. 
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Fig. 2. Distribution of local numbers Nu(x) on the 
sides of a rectangular tube: a) along the wall at 
TI = 400 K; b) at T 2 = 500 K, z/d = 70. 

Fig. 3. Temperature surfaces (central projection) 
in a rectangular channel with different foreshorten- 
ings. 

Besides calculating the mean values Nu, we obtained the distributions of the local val- 
ues Nu(x). These are shown in the form of a dimensionless function fNu = Nu(x)/Nu. The non- 
uniformity in the distribution fNu of the variants we studied reached 10-12%. 

The overall pattern of distribution of the investigated functions in the channel is 
shown in Fig. 1 in the form of isolines of U, T, and Ck0. 

The initial value of the step Az was 10 -5 m, while use of the procedure of automatic 
step selection made it possible to increase Az to values of 0.01-0.3 m. Since most of the 
time spent on solving the initial system is spent on integrating the equation of motion, 
the velocity profile was calculated until the standard deviation of the velocity values on 
two "time" layers did not differ by more than 1%. 

Conclusions. The modular structure of the program makes it possible, without signifi- 
cant modifications, to study channels of different configurations (tube bundles, annular 
channels, rectangular channels, etc.) and phenomena of different types (free and forced con- 
vection) and to consider factors such as the variability and anisotropy of thermophysical 
properties. 

By resorting to direct numerical integration of the system of transport equations, it 
is possible to obtain almost complete information on the distribution of hydrodynamic and 
thermal characteristics for a flow. The use of graphical service programs makes it possible 
to represent the information in the form of three-dimensional figures (second-order curves), 
for example. In connection with this, Fig. 3 shows temperature surfaces with different fore- 
shortenings. The coupled formulation of the problem makes it possible to avoid the diffi- 
culties connected with boundary conditions on the heat-transfer surface. 

The use of criterional formulas to model heat transfer in rectangular channels is dif- 
ficult in the case of combination boundary conditions, while the use of Mikheev formulas 
leads to sizable errors (as shown by the above calculations). 
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The use of a hybrid method combining finite element calculation of the parameters in 
the channel cross section (the use of planar elements)and finite-difference approximation 
lengthwise is evidently the most effective and expedient approach with regard to saving com- 
puter storage and cutting processor operating time. The latter is 30-40 sec for one step on 
an ES-1061 computer. 

NOTATION 

U, velocity; T, temperature; Ck, concentration of the k-th component; x, y, z, carte- 
sian coordinate system; p, density; If, frozen thermal conductivity; Pt, it, and Dt, turbu- 
lent values of the viscosity coefficient, thermal conductivity, and diffusion, respectively; 
N--u, mean Nusselt number for both sides T l and T 2. Indices: (e) - for an element; wa - wall. 
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APPROXIMATE SOLUTION OF A PROBLEM OF CONVECTIVE HEAT TRANSFER 

BETWEEN A PLATE AND LIQUID METALS 

V. V. Golubev UDC 532.526.4:536.242 

This article examines a theoretical method of calculating the heat-transfer 
coefficient for different values of the Reynolds number of a liquid-metal 
flow onto a plate. 

The differential (local) method has become the method most commaonly used in the general 
theory of qualitative and quantitative description of heat transfer under conditions of wall 
turbulence. In this method, turbulent heat transfer is completely determined by the physi- 
cal parameters (density, viscosity, distributions of mean velocities and temperature) of a 
uniform fluid flow (liquid metals, gas, liquids in drop form) [i]. If we connect a trans- 
lating coordinate system with a local fluid particle, then in accordance with Galileo's 
principle all of the dynamic processes of turbulent transport will occur identically in re- 
gard to this inertial system of reference [I]. 

Let only two physical quantities - momentum and heat - be transported through stream- 
lines representing the averaged motion of the fluid medium. Then the transfer of momentum 
creates turbulent friction between the layers of the fluid, while heat transfer results in 
turbulent heat conduction. Since there are no other factors contributing to turbulent heat 
transfer in the given case, the turbulent mixing mechanism will be the same for both tur- 
bulent friction and turbulent heat conduction [i]. Meanwhile, the same volumes of fluid 
simultaneously transfer momentum and heat. If no heat is exchanged with the environment, 
then it follows from the Prandtl theory [i] that if momentum is conserved, then the amount 
of heat transferred by the fluid volumes is also conserved. This leads to a situation where- 
by the turbulent Prandtl number, characterizing the connection between turbulent transfer of 
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